
| <b>M1</b> .(a) | add exc | ress copper carbonate (to dilute hydrochloric acid)  accept alternatives to excess, such as 'until no more reacts'                       | 1 |
|----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------|---|
|                |         | filter (to remove excess copper carbonate)  reject heat until dry                                                                        | 1 |
|                |         | heat filtrate to evaporate some water <b>or</b> heat to point of crystallisation accept leave to evaporate or leave in evaporating basin | 1 |
|                |         | leave to cool (so crystals form)  until crystals form                                                                                    | 1 |
|                | (b)     | must be in correct order to gain <b>4</b> marks $M_{r} \operatorname{CuCl}_{2} = 134.5$ $correct \ answer \ scores \ \textbf{4} \ marks$ | 1 |
|                |         | moles copper chloride = (mass / $M_r$ = 11 / 134.5) = 0.0817843866                                                                       | 1 |
|                |         | <i>M</i> <sub>r</sub> CuCO <sub>3</sub> = 123.5                                                                                          | 1 |
|                |         | Mass CuCO <sub>3</sub> (=moles × $M_2$ = 0.08178 × 123.5) = 10.1(00)                                                                     | 1 |



accept 10.1 with no working shown for 4 marks

152.5

allow ecf from step 1

1

88.20 (%)

allow 88.20 with no working shown for 3 marks

(e) atom economy using carbonate lower because an additional product is made or carbon dioxide is made as wellallow ecf

[14]

| <b>12.</b> (a) | (delive | ry) tube sticks into the acid                                                                                                 | 1 |
|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------|---|
|                |         | the acid would go into the water <b>or</b> the acid would leave the flask or go up the delivery tube  ignore no gas collected | 1 |
|                | (b)     | any <b>one</b> from:  • bung not put in firmly / properly                                                                     |   |
|                |         | <ul> <li>gas lost before bung put in</li> <li>leak from tube</li> </ul>                                                       | 1 |
|                | (c)     | all of the acid has reacted                                                                                                   | 1 |
|                | (d)     | take more readings in range 0.34 g to 0.54 g                                                                                  | 1 |
|                |         | take more readings is insufficient ignore repeat                                                                              |   |
|                | (e)     | <u>95</u><br>24000                                                                                                            | 1 |
|                |         | 0.00396                                                                                                                       |   |
|                |         | or $3.96 \times 10^{-3}$                                                                                                      | a |
|                |         |                                                                                                                               | 1 |

| (f) | use a pipette / burette to measure the acid                                                                                                                                          | 1         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | because it is more accurate volume than a measuring cylinder or greater precision than a measuring cylinder or use a gas syringe to collect the gas so it will not dissolve in water |           |
|     | use a flask with a divider  accept description of tube suspended inside flask  so no gas escapes when bung removed                                                                   | 1         |
| (g) | they should be collected because carbon dioxide is left in flask at end                                                                                                              | 1         |
|     | and it has the same volume as the air collected / displaced                                                                                                                          | 1<br>[11] |
|     |                                                                                                                                                                                      |           |

## **M3.**(a) X: Fe<sup>2+</sup> / iron(II), SO<sub>4</sub><sup>2-</sup> / sulfate allow iron(II) sulfate or FeSO4 1 Y: Na<sup>+</sup> / sodium, I<sup>-</sup> / iodide allow sodium iodide **or** Nal 1 Z: Fe<sup>3+</sup> / iron(III), Br<sup>-</sup> / bromide allow iron(III) bromide or FeBr₃ correct identification of any two ions = one mark correct identification of any four ions = two marks 1 any five from: (b) allow converse arguments

## method 1

- weighing is accurate
- not all barium sulfate may be precipitated
- precipitate may be lost
- precipitate may not be dry
- takes longer
- requires energy

allow not all the barium hydroxide has reacted

## method 2

- accurate
- works for low concentrations allow reliable / precise

[8]

5

## **M4.**(a) copper has delocalised electrons

accept copper has free electronsignore sea of electrons **or** mobile electrons

1

(electrons) which can move <u>through the metal / structure</u>

allow (electrons) which can carry a charge <u>through the metal / structure</u>

1

(b) (i) 
$$(M, FeCl_3 =) 162.5$$

correct answer with or without working gains **3** marks can be credited from correct substitution in step **2** 

1

or

2 (moles of) FeCl  $_{3}$  = 325

or

112 <del>→</del> 325

$$\frac{11.20}{56} \times 162.5$$

allow ecf from step 1

$$\frac{325}{112} \times 11.2$$

1

= 32.5 accept 32.48

1

(ii) 74.8

accept 74.77 - 75

accept ecf from (b)(i)

if there is no answer to part(i)

or

if candidate chooses not to use their answer then accept 86.79 - 87

[6]

1